Tag Archives: detail

The Difference Between Detail Correction and Aperture.

Just to clarify the differences between Detail settings and the Aperture setting.

Detail has a sub set of settings including: frequency, level, crispening, knee aperture, black and white limit. These sub settings all affect the amount and level of detail correction applied.

Aperture is a completely separate type of adjustment.

Detail works on contrast. The higher the contrast in an image, the sharper it appears. A bright sunny day will look sharper that a dull cloudy day because there is more contrast. detail works by increasing contrast by adding black or white edges to any parts of the image where the contrast changes rapidly, for example the edge of an object silhouetted against the sky. This increases contrast still further, making the image appear sharper. The crispening setting sets the contrast threshold at which detail gets added, level adjusts the amount.

Aperture is a simple high frequency boost. As fine details and textures are normally represented by high frequencies within the image, boosting high frequencies can help compensate for the natural fall off in lens and sensor performance at higher frequencies. This helps enhance textures and other subtle, fine details within the image look clearer.

Neither setting will increase the cameras resolution. Both make the image “appear” sharper. Detail correction IMHO is very un-natural looking and electronic, while careful use of aperture can help sharpen the image without necessarily looking un-natural.

Softening Faces and Skin Tone.

XDCAM cameras have Sony’s Skin Tone Detail Correction system included in the picture profiles. By turning this on you can point the camera at a face (or any other coloured object) and select the hue you want to treat. By using the phase and saturation controls you can adjust the exact hue and hue range that will be treated. Then you can turn the detail level up and down for the selected range.

It works but is a little fiddly to set. I don’t normally use it, instead preferring to shoot with slightly reduce detail level settings overall and then adding a diffusion filter in post production using Magic Bullet or similar. Another option would be to use a diffusion filter or similar on the camera, I like the Tiffen Gold Diffusion/FX for faces. If your budget won’t stretch to that then don’t forget that you can always stretch a very fine mess net over the lens such as a stocking for a pleasing diffusion effect. Again tricky to get just right, if the mesh is too big you’ll see it, too small and you completely blur the image.

Why do my pictures go soft when I pan? Camera Detail Correction in depth.

Why do my pictures go soft when I pan? Camera Detail Correction in depth.

This article is my Christmas present for my readers. When your trying to set up a camera or brew up a picture profile it really helps if you understand the ramifications of each of the settings. I hope this helps explain how detail correction works and how it effects your image.
I am often asked to explain why someones images are going soft when they pan the camera or when there is a lot of movement in the scene. Well this can be down to many things including poor compression or too low a bit rate for the recording, but the two main issues are shutter speed (which is tied in to your frame rate) and detail correction. I’ll cover frame rates and shutter speeds in the near future, but today I’m going to look at Detail Correction.
First of all what is detail correction for? Well originally it was used to compensate for the low resolution of domestic cathode ray tube TV’s and the limited speed at which a CRT TV could go from light to dark. Modern LCD, Plasma and OLED displays handle this much better, but still detail correction remains important to this day to as a way of adding the appearance of additional sharpness to a video image. You’ll often see extreme examples of it on SD TV shows as a dark halo around objects.

Perfect Greyscale

The image above is of an imaginary perfect greyscale chart. Looking at it you can see on your screen that each grey bar is quite distinct from the next and the edge between the two is sharp and clear. You computer screen should be quite capable of showing an instant switch from one grey level to the next.

Grey Scale with Waveform

Now if we add the waveform that the “perfect” greyscale would give we can see that the transition from each bar to the next is represented by a nice crisp instant step down, the transition from one bar to the next happening over a single pixel.

Grey Scale as seen by camera

The image above represents what a typical video camera might reproduce if it shot the greyscale chart without any form of detail correction or sharpening. Due to the need to avoid aliasing, lens performance and other factors it is impossible to get perfect optical performance so there is some inevitable blurring of the edges between the grey bars. Note that these images are for illustration only, so I have exaggerated the effect. I would expect a good HD camera to still produce a reasonably sharp image.

Camera Waveform

Looking at the cameras waveform you can see that the nice square edges we saw in on the perfect greyscale waveform have gone and instead the transition from bar to bar is more rounded. Now there are two things that camera manufactures commonly do to correct or compensate for this. One is called aperture correction which is a high frequency signal boost (I’ll explain that another time) but the one were going to look at in this case is called detail correction often simply referred to as “Detail”.

Detail Correction sampling

So what happens in the camera? Well the camera constantly compares the video luminance (brightness) levels of the image over a set time period. This time period is incredibly short and in the example given here is the time it takes for the cameras line scan to go left to right from point A to point B. If the  difference in the brightness or luminance of the two samples is greater than the threshold set for the application of detail correction (known as crispening on Sony cameras) then the detail circuit kicks in and adds a light or dark enhancement to the brightness change.

Camera image with Detail Correction added

With an HD video camera the light or dark edges added by the detail correction circuit are typically only a few pixels wide. On an SD camera they are often much wider. On a Sony camera the detail frequency setting will make the edges thicker (negative value) or thinner (positive value). The Black and White limit settings will limit how bright or how dark the added correction will be and the detail level control determines just how much correction is added  to the image overall.

One important thing to consider is that as the amount of detail correction that is applied to the image is dependant on differences in the image luminance  measured over time, so you have to consider what happens when the scene is moving or the camera pans.  Two things happen when you pan the camera, one is that the image will blur a little due to things moving through the frame while the shutter is open and from line to line objects will be in a slightly different position.

Blur due to camera pan softens the image.

So looking at the waveform we can see that the waveform slope from one grey bar to the next becomes shallower due to the blur induced through the motion of the camera. If we now sample the this slightly blurred image using the same timescale as before we can see that the difference in amplitude (brightness) between the new blue samples at A and B is significantly smaller than the difference between the original red sample points.

Smaller Luma difference due to pan blur

What this means in practice is that if the difference between the A and B sample drops below the threshold set for the application of detail correction then it is not applied. So what happens is that as you pan (or there is motion in the scene) the slight image softening due to motion blur will decrease the amount of detail correction being applied to the image so the picture appears to noticeably soften, especially if you are using a high detail correction level.

Detail correction is applied to both horizontal image differences as outlined above and also to vertical differences. As the vertical sampling is taken over 2 or 3 image lines there is much longer time gap between the samples. So when you pan, an object that was in one position on one line may have moved significantly enough by the time the frame scan has progressed 2 more lines that it is in a different position so the detail sampling will be wrong and detail may not be applied at all.

If you are finding that you are seeing an annoying amount of image softening when you pan or move your camera then you may want to consider backing off your detail settings as this will reduce the difference between the detail “on” look and detail “off” look during the pan or movement. If this softens your images too much for your liking then you can compensate by using Aperture Correction (if your camera has this) to boost the sharpness of your image. I’ll explain sharpness in more depth in a later article.

Merry Christmas!

PMW-350 Aperture Correction what is it doing?

PMW-350 Aperture Correction

After completing the multi camera shootout at Visual Impact, one thing was bothering me about the pictures from the PMW-350 and that was the way the specular highlights in the tin foil were artificially enhanced. During the test the camera was set to factory defaults, which IMHO are too sharp, but the foil in particular looked nasty. Since then I have been further refining my paint settings for the 350 and looking at detail and aperture. Today I was replicating the tin foil test and looking at the aperture settings (not the knee aperture) and I noticed that turning aperture on and off had a very pronounced effect on highlights but a much smaller effect elsewhere in the image. Normally I would expect the aperture setting to act as a high frequency boost making subtle textures more or less enhanced, which it does, but the amount of enhancement appears to vary with the brightness of the image with specular highlights getting a really big hit of correction. If you look at the images to the left at the top you have aperture correction on at +99. There are big ugly black lines around the highlights on the foil and the texture of the carpet has been enhanced. To some degree this is the expected behaviour although I am surprised by how thick the edges around the highlights are, this looks more like detail correction (it could be “ringing”). The middle images are aperture off, not zero but actually off and you can see that the edges on the foil have gone and the carpet is no longer enhanced. The bottom picture though with aperture on at -99 though is very interesting as the carpet appears slightly softer than OFF, which is not unexpected while the foils is sharper than OFF and this is not expected. I don’t like this behaviour I’m afraid to say as a typical way to get a filmic look from a video camera is to turn the detail correction off to give a natural picture and then use Aperture correction to boost high frequencies to retain a sharp image. On the PMW-350 you can’t do this as this as a high Aperture setting will give you those nasty edges on highlights. So what can you do? Well the 350?s native, un-enhanced resolution is very high anyway so it doesn’t need a lot of correction or boosting. The default Detail and Aperture settings will give some really nasty highlight edges so you need to back things off. If your going for a filmic look I would turn OFF aperture correction altogether, for video work with pictures that have some subtle enhancement I would use Aperture at around -20, certainly never higher than -15 unless you like black lines around specular highlights.

My current prefered detail, aimed at giving a very slight, not obvious enhancement are are as follows:

Detail Level -12, H-V Ratio +15, Crispening 0, Frequency +30, White Limit +30, Black Limit +40 (all other detail settings at default)

Aperture OFF for filmic look, Aperture -20 for video look.

I have also made some changes to the Matrix settings. I have been finding the pictures from Sony cameras to be a little on the Green/Yellow side so I have tweaked things a little to remove the yellow cast and put in a bit of red, this is a subtle change but really helps with skin tones, stopping on screen talent from looking ill! These settings work in the PMW-350, EX1/3 and PDW-700.

On an EX1/EX3 this works best with the Standard Matrix, On a PMW-350 or PDW-700 you can use it on it’s own or mix it with one of the preset matrices as a modifier. User Matrix On, R-G 0, R-B +5, G-R -6, G-B +8, B-R -15, B-G -9

Have Fun!

Brewing up a Scene File for the PMW-350 (and other cameras)

I decided to write a more detailed post to continue the discussions on scene file settings for the PMW-350. This is a work in progress. Some of this may also be of interest to other camera users as I hope to give a basic description of what all the various settings do.

First off let me say that there is no “right way” or “wrong way” to set up a scene file. What works for one person may not be to anothers taste, or suit different applications. For me, my requirements are a neutral look, not over corrected or too vivid, but retaining a pleasing contrast range. I hope, as this thread develops to explain a little bit about each of the settings and what they actually do in the hope that it will make it easy for you to adjust the scene files to suit your own needs. I hope others will jump in with their suggestions too!

So first of all I have been looking at the sharpness of the image. The principle settings that affect this are the Detail and Aperture settings.

Detail enhances rapid transitions from light to dark within the pictures by exaggerating the transition with the addition of a black or white edge. So it only really works on object outlines and larger details (low frequency). The circuitry that determines where these edges are uses an electronic delay to compare adjacent pixels to see whether they are brighter or darker compared to each other. Because of this any rapid movement within the frame stops the circuitry from working. If you have picture with a lot of detail correction and you do a pan for example the image will appear to go soft as soon as the camera moves as the detail circuitry can no longer determine where the edges within the image are and thus applies less detail correction. A good way to visually gauge how much detail a camera is applying to a clip is to look for this. With a good high resolution camera, set up well, it should not be all that obvious, but a low resolution camera that uses lots of detail correction to compensate will exhibit lots of softening on pans.

As well as adjusting the amount of detail correction (Detail Level), you can also adjust the ratio of horizontal and vertical correction, the maximum brightness or darkness of the applied edges (white and black limit). The thickness of the edges (frequency), the minimum contrast change that the correction will be applied to (crispening) and you can tell the camera not to apply detail correction to dark areas (level depend).

The other setting that effects picture sharpness is Aperture. Aperture correction is a high frequency boost circuit, it simply, in effect, enhances transitions from dark to light or light to dark in fine detail and textures such as fabrics, skin, hair, grass etc. It’s operation is not as obvious as “Detail” correction, but if overdone it can make textures sparkle with flashes of white or black, all very un-natural.

An important note about image detail is that if you have too much of it for the given image resolution then you get problems such as aliasing and moire which manifest themselves as rainbows of colour or buzzing, jittering areas in the picture. If you want to know more about this look up Nyquist theory. This is one of the reasons why downconverting HD to SD and getting a good picture can be harder than you might think as you are often starting out with too much detail (but that’s another topic on it’s own).

So… on to the PMW-350. Out of the box it’s really sharp. The camera has full 1920×1080 sensors, so even with all detail correction turned off the image is still pretty sharp. However most viewers are used to seeing picture with some detail correction, so if you turn it all off, to many it looks soft. If you were going for a really filmic look, detail off and aperture off would have to be a serious option. For my customers though a little bit of subtle “zing” seems to be what they like.

I found that these settings worked well for general all-round use.

Detail Level -14?H/V Ratio +20 (helps balance horizontal and vertical resolution)?Frequency +35 (makes the edges thinner, if your doing a lot of SD you may want to go the other way to -50 so that the edges can still be seen in SD)?White Limit +35 (limits brightness of white edges)?Black Limit +30 (limits darkness of black edges)

Aperture -20

If you are doing a lot of grading and work with low key scenes (large dark areas) you can use the level depend and crispening settings to help prevent “detail” being added to any picture noise. This makes any noise less apparent.

A starting point for this would be:

Crispening +35?Level depend +20

For normal light levels these are not needed with the 350 IMHO. If you are shooting with more than +6db gain then raising the level depend to +60 will help with noise.

PMW-350 Detail Settings


I have finally managed to get my hands on a production PMW-350. I am going to start dialing it in. The first thing to address for me is the over sharpened pictures, so I have been playing with the Paint settings aiming towards a natural, yet sharp look. I have come up with these detail setings. Everything is default except:

Detail Level -16?H/V Ratio +20?Detail Frequency +35?White limit +39?Black Limit +20?Aperture -30

This is still a work in progress.

Next I’m going to start looking at the Gamma curves and Knee. I have a nice Hamlet MicroFlex scope to help with this. Previously I have had to rely on my eye and then check the footage against the scopes in the edit suite, now I can see the waveforms on location. I’ll be writting up both the gamma settings and a microflex review in due course.