Tag Archives: log

Set of 20 Cube LUT’s for the Sony A7S.

I’ve been doing a lot of work on shooting SLog-2 with the A7s. I realised almost straight away that a set of LUT’s for this camera would really help speed up my grading and testing. In addition as the camera is only 8 bit I have found that I am actually getting the best results from the Slog-2 if I over expose it just a little bit, depending of course on the scene. So I created a set of LUT’s that includes compensation for shooting at the nominal correct exposure as well as either 1 or 2 stops over exposed. In all there are 20 LUT’s in two sets. One is Rec-709 based LUT’s and the other Filmic LUT’s to act as starting points for further grading.

I am in the process of creating the complete workflow and SLog-2 guide for the A7s which I should be publishing later next week which will have much more information on how to use these LUT’s. But in the mean time here are the LUT’s if anyone want’s to play (and I would like feedback on what you think of them).

The LUT naming goes something like this:

AC A7S  709(800) ZERO

AC  (That’s me!).    A7S (The Camera).

709(800) = Output gamma or style.     ZERO = Exposure off set.

The exposure offset refers to the number of stops the footage is over exposed by relative to the normal SLog2 exposure level of Middle Grey at 32% and 90% white at 59%. ZERO menas no exposure offset. 1STOP would be used when the SLog2 was exposed 1STOP over and in this case the LUT then shifts the exposure back down 1 stop to compensate.

709 = Vanilla Rec-709, very contrasty, but limited highlight response and hard clip of over exposure.

709(800) = Rec-709 gamma with 800% (high) dynamic range. Will be slightly low contrast but deals much better with over exposure or bright highlights than vanilla 709.

Film-Like1 = An extended range gamma with highlight roll off (+400% range), slightly de-saturated, slightly more film like color (small red/yellow removed).

Filmic2 = Extended range low contrast gamma with very good over exposure handling. Slightly de-saturated. Good grading start point.

Filmic3 = Similar to Filmic2 but a little more contrast at the expense of a little less highlight roll off.

Click on the links below to download the LUT sets. PLEASE DO NOT HOST THESE ELSEWHERE OR DISTRIBUTE THESE ELSEWHERE OR VIA ANY MEANS OTHER THAN A LINK TO THIS PAGE.

Alisters A7S 709 LUTS v2

Alisters A7S Filmic LUTS set1
If you find the LUT’S useful, please consider buying me a beer or a coffee.


Type



Exposing via LUT’s with the PMW-F5 and PMW-F55.

There is an ongoing and much heated debate on another forum about the practicalities of using the LUT’s or Looks built in to the PMW-F5 and PMW-F55 for setting the correct exposure of your SLog or Raw footage. In response to this I put together a very rough video demonstrating how this actually works.

Before watching the video, do please understand the following notes:

Correct exposure is normally determined by the level at which middle grey is recorded. This is true of both video and film production. Light meters are calibrated using middle grey. Expose with a light meter and you will find middle grey at the levels indicated below.

Different gamma curves may use different middle grey levels depending on the contrast required and the dynamic range of the gamma curve. Generally speaking, the greater the dynamic range, the lower middle grey must be set in order to leave room above middle grey for the extra dynamic range. This means that the relationship between middle grey and white will be different from curve to curve. Don’t always expect white to be some fixed value above middle grey. Some of the Sony looks for example LC709TypeA are very low contrast and while middle grey still sits at around 42% (The ITU standard for Rec-709 is 41.7%), because it is a low contrast, high dynamic range curve white is at a lower level, around 70%. The Hypergamma LUT grey points are given by the “G40″ or G33” number – G40 meaning middle grey at 40%.

When you take Slog or raw in to post production it is expected that the middle grey of the recordings will be at the correct nominal level (see chart below). If it is not, when you apply a post production Slog or raw LUT then the footage may appear incorrectly exposed. If you try to bring Slog or raw into an ACES workflow then ACES expects middle grey to be at the correct values. So it is important that your Slog or raw is exposed correctly if you want it to work as expected in post.

Correct exposure levels for Sony's Slog.
Correct exposure levels for Sony’s Slog.

Having said all of the above… If you are using CineEI and lowering or raising the EI gain from the native ISO then your Slog or raw will be exposed brighter or darker than the levels above. But I must assume that this is what you want as you are probably looking to adjust the levels in post to reduce noise or cope with an over exposure issue. You may need to use a correction LUT to bring your Slog levels back to the nominal correct levels prior to adding a post production LUT.

Anyway, here’s the video.

What’s the difference between Latitude and Dynamic Range?

These two words, latitude and dynamic range are often confused and are often used interchangeably.  Sometimes they can be the same thing (although rare), sometimes they may be completely different. So what is the difference and why do you have to be careful to use the right term.

Lets start with dynamic range as this is the simplest to understand. When talking about a digital camera the dynamic range is quite simply the total range from the darkest shadow to the brightest highlight that the camera can resolve in a single shot. To be included in the dynamic range you must be able to discern visually or measure with a scope a brightness change at both ends of the range. So a camera that can resolve 14 stops will be able to shoot a scene with a 14 stop brightness range and show some information from stop 0 to stop 14. It is not just a measure of the cameras highlight handling, it includes both highlights and shadows. One camera may be very low noise, so see very far into the shadows but not be so good with highlights. While another may be noisy, so not able to see so far into the shadows but have excellent highlight handling. Despite these differences both might have the same dynamic range as it is the range we are looking at, not just one end or the other.

One note of caution with published dynamic range figures or measurements is that while you may be able to discern some picture information in those deepest shadows or brightest highlights, just how useable both ends of the range are will depend on just how the camera performs at it’s extremes. It is not uncommon for the darkest stop to be so close to the cameras noise floor that in reality it’s barely useable, but as it can be measured it will be included in the manufacturers dynamic range figures.

This brings us on to latitude because latitude is a measure of just how flexible you can be with your exposure without significantly compromising the finished picture. The latitude will always be less than the cameras dynamic range. With a film camera, the film stock would have a sensitivity value or ISO. You would then use an exposure meter to determine the optimum exposure. The latitude would then be how much can you over expose or under expose and still have an acceptable result. But what is “an acceptable result”? Here is one of the key problems with determining latitude, what some people may find unacceptable others may be happy with so it can be difficult to quantify the exact latitude of a film stock or video camera precisely. However what you can do is determine which cameras have bigger ranges for example camera “A” has a stop more latitude than camera “B” provide you use a consistent “acceptable quality” assesment.

Anyone that’s shot with a traditional ENG or home video camera will know that you really need to get your exposure right to get a decent looking picture. Take a simple interview shot, expose it right and it looks fine. Overexpose by 1 stop and it looks bad, even if you try to grade it it will still look bad. So in this example the camera would have less than 1 stop of over exposure latitude. But if you underexpose a video camera, the picture gets darker, but after a bit of work in post production it may well still look OK. It will depend in most cases on how noisy the picture becomes when you boost the levels in post to brighten the picture. But typically you might be able to go 1 to 1.5 stops under exposed and still have a useable image. So in this case the camera would have 1.5 stops of underexposure latitude. This then gives a total latitude for our hypothetical camera of around 2 to 2.5 stops.

But what of we increase the dynamic range of the camera or have a camera with a very big dynamic range. Does my latitude increase?

Well the answer is maybe. In some cases the latitude may actually decrease. How can that be possible, surely with a bigger dynamic range my latitude must be greater?

Well, unless your shooting linear raw (more on that in a bit) you will be using some kind of gamma curve. The gamma curve is there to allow you to squeeze a large dynamic range into a small amount of data. It does this by mimicking the way we perceive light in a non linear manner and uses less data in highlights which are perceptually less important to us humans. Even uncompressed video normally has a gamma curve. Without a gamma curve the amount of data needed to record a decent looking picture would be huge as every additional stop of dynamic range actually needs twice as much data as the previous to be recorded faithfully.

With cameras with larger dynamic ranges then things such as knee compression or special gamma curves like Hypergamma, Cinegamma or Log are used. The critical thing with all of these is that the only way to squeeze that greater dynamic range into the same size recording bucket is by adding extra compression to the recorded image.

exposure1This compression is normally restricted to the highlights (which are perceptually less important). Highlight compression now presents us with an exposure problem, because if we over expose the shot then the picture won’t look good due to the compression. This means that even though we might have increased the cameras dynamic range (by squeezing and compressing more information into the highlight range) we may have reduced the exposure latitude as any over exposure places important mid range information into the highly compressed part of the gamma curve. So bigger dynamic range does not mean greater latitude, in fact in many cases it means less latitude.

Here’s the thing. Unless you make the recording data bucket significantly bigger (better codec and more bits, 10 bit 12 bit etc), you can’t put more data (dynamic range or stops) into that bucket without it overflowing or without squashing it. Given that most cameras used fixed 8 bit or 10 bit recording there is a finite limit to what can be squeezed into the codec without making some pretty big compromises.

Compression point with Hypergamma/Cinegamma.
Compression point with Hypergamma/Cinegamma.

With a standard gamma curve white is exposed around 90% to 95%, remember a white card only reflects 90% of the light falling on it not 100%. Middle grey perceptually appears half way between black and white so it’s around 40%-45%. Above 90% is where the knee normally acts to compress highlights to squeeze quite a large dynamic range into a very small recording range, so anything above 90% will be very highly compressed, but below 90% we are OK and we can safely use the full range up to 90%. Expose a face below 90% and it will look natural, above 90% it will look washed out, low contrast and generally nasty due to the squeezing together of the contrast and dynamic range.

But what about a Hypergamma or Cinegamma (or any other high dynamic range gamma curve)? Well these don’t have a knee, instead they start to gradually introduce compression much lower down the gamma curve. A little bit at first and then ever increasing amounts as we go up the exposure range. This allows them to squeeze in a much greater dynamic range in a pleasing way (provided you expose right). But this means that we can’t afford to let faces etc go as high as with the standard gamma because if we do they will start to creep in to the highly compressed part of the curve. So this means that even the slightest over exposure will hurt our image.  So even thought they have greater dynamic range, these curves have less exposure latitude because we really really can’t afford to over expose them. Sony compensate for this to some degree by recommending a lower middle grey point between 32 and 40% depending on the curve you use. This then brings your overall exposure lower so your less likely to over expose, but that now means you have less under exposure range as your already shooting a bit darker (White with the hypergammas tends to fall lower, around 80%, so faces and skin tones that would normally be around 70% will be around 60%).

More highlight compression means exposure is still critical despite greater dynamic range
More highlight compression means exposure is still critical despite greater dynamic range

But what about Log?

Now lets look at S-Log2, S-log3. Most  log curves are also similar, very highly compressed gamma curves with huge amounts of highlight compression to squeeze in an exceptionally large dynamic range. With Slog2 White is designed to be at 59% and middle grey at 32% and with S-log3 middle grey is 41% and white 61%. So faces will need to sit between around 40% and 50% to look their best. Now log is a little bit different. Log shooting is designed to be done in conjunction with LUT’s (Look Up Tables) in post production. These LUT’s convert the signal from Log gamma to conventional gamma. When you apply the correct LUT to correctly exposed Log everything comes out looking good. What about over exposed Log? This is where it can get tricky. If you have a good exposure correction LUT or really know how to grade log properly (which can be tricky) then you can expose Log by one or 2 stops, but no more (in my opinion at least, 2 stops is a lot of over exposure for Log, I would try to stay less than 2 stops over). Over expose too much and the image gets really hard to grade and may start to lack contrast. One thing to note is when I say over-exposed with respect to log, I’m not talking about about a clipped picture, but simply an image much brighter than it should be. For example with Slog3 faces will be around 52%. If you expose faces at 70% your actually just over 2 stops over exposed and grading is going to start to get tricky and you may find it hard to get your skin tones just right. So, when shooting log make sure you know what the recommended levels are for the curve you are using. I’m not saying you can’t over expose a bit, just be aware of what is correct and that level shifts of just a 7 or 8% may represent a whole stop of exposure change.

It’s only when you stop shooting with conventional gamma curves and start shooting linear that the latitude really starts to open up. Cameras like the Sony F5/F55 use linear raw recording that does not have a gamma curve. When you have no gamma curve then there is no highlight compression. So for example you could expose a face anywhere between in conventional terms between say 45% (the point where perhaps it becomes too noisy if you expose any darker) and 100% it will look just fine after grading because at no point does it become compressed. This is a massive latitude increase over a camera using a gamma curve. It gets even better if the camera is very low noise as you can afford to expose at an even lower level and bring it up in post. This is why raw is such a big deal. I find it much easier to work with and grade raw than log because raw just behaves nicely.

In Conclusion:

Dynamic range is the range the camera can see from the deepest darkest shadows to the brightest highlights in the same shot. Latitude is the range within the dynamic range where we can expose and still get a useable image.

A camera with lower noise will allow you to expose darker and bring your levels up in post, this gives an increase in under exposure range.

Most video cameras have a very limited over exposure latitude due to aggressive highlight compression. This is the opposite to a film camera.

Bigger dynamic range does not always mean greater latitude.

Cameras that shoot raw typically have a much greater latitude than a camera shooting with a gamma curve. For example an F5 shooting SLog2/3 has a much smaller exposure latitude than when shooting raw even though the dynamic range is the same in both cases.

 

Choosing the right gamma curve.

One of the most common questions I get asked is “which gamma curve should I use?”.

Well it’s not an easy one to answer because it will depend on many things. There is no one-fits-all gamma curve. Different gamma curves offer different contrast and dynamic ranges.

So why not just use the gamma curve with the greatest dynamic range, maybe log? Log and S-Log are also gamma curves but even if you have Log or S-Log it’s not always going to be the best gamma to use. You see the problem is this: You have a limited size recording bucket into which you must fit all your data. Your data bucket, codec or recording medium will also effect your gamma choice.

If your shooting and recording with an 8 bit camera, anything that uses AVCHD or Mpeg 2 (including XDCAM), then you have 235 bits of data to record your signal. A 10 bit camera or 10 bit external recorder does a bit better with around 940 bits of data, but even so, it’s a limited size data bucket. The more dynamic range you try to record, the less data you will be using to record each stop. Lets take an 8 bit camera for example, try to record 8 stops and that’s about 30 bits per stop. Try to extend that dynamic range out to 11 stops and now you only have about 21 bits per stop. It’s not quite as simple as this as the more advanced gamma curves like hypergammas, cinegammas and S-Log all allocate more data to the mid range and less to highlights, but the greater the dynamic range you try to capture, the less recorded information there will be for each stop.

In a perfect world you would choose the gamma you use to match each scene you shoot. If shooting in a studio where you can control the lighting then it makes a lot of sense to use a standard gamma (no knee or knee off) with a range of up to 7 stops and then light your scene to suit. That way you are maximising the data per stop. Not only will this look good straight out of the camera, but it will also grade well provided your not over exposed.

However the real world is not always contained in a 7 stop range, so you often need to use a gamma with a greater dynamic range. If your going direct to air or will not be grading then the first consideration will be a standard gamma (Rec709 for HD) with a knee. The knee adds compression to just the highlights and extends the over-exposure range by up to 2 or 3 stops depending on the dynamic range of the camera. The problem with the knee is that because it’s either on or off, compressed or not compressed it can look quite electronic and it’s one of the dead giveaways of video over film.

If you don’t like the look of the knee yet still need a greater dynamic range, then there are the various extended range gammas like Cinegamma, Hypergamma or Cinestyle. These extend the dynamic range by compressing highlights, but unlike the knee, the amount of compression starts gradually and get progressively greater. This tends to look more film like than the on/off knee as it tends to roll off highlights much more gently. But, to get this gentle roll-off the compression starts lower in the exposure range so you have to be very careful not to over expose your mid-range as this can push faces and skin tones etc into the compressed part of the curve and things won’t look good. Another consideration is that as you are now moving away from the gamma used for display in most TV’s and monitors the pictures will be a little flat so a slight grade often helps with these extended gammas.

Finally we come to log gammas like S-Log, C-Log etc. These are a long way from display gamma, so will need to be graded to like right. In addition they are adding a lot of compression (log compression) to the image so exposure becomes super critical. Normally you’ll find the specified recording levels for middle grey and white to be much lower with log gammas than conventional gammas. White with S-Log for example should only be exposed at 68%. The reason for this is the extreme amount of mid to highlight compression, so your mid range needs to be recorded lower to keep it out of the heavily compressed part of the log gamma curve. Skin tones with log are often in the 40 – 50% range compared to the 60-70% range commonly used with standard gammas.  Log curves do normally provide the very best dynamic range (apart from raw), but they will need grading and ideally you want to grade log footage in a dedicated grading package that supports log corrections. If you grade log in your edit suite using linear (normal gamma) effects your end results won’t be as good as they could be. The other thing with log is now your recording anything up to 13 or 14 stops of dynamic range. With an 8 bit codec that’s only 17 – 18 bits per stop, which really isn’t a lot, so for log really you want to be recording with a very high quality 10 bit codec and possibly an external recorder. Remember with a standard gamma your over 30 bits per stop, now were looking at almost half that with log!

Shooting flat: There is a lot of talk about shooting flat. Some of this comes from people that have seen high dynamic range images from cameras with S-Log or similar which do look very flat. You see, the bigger the captured dynamic range the flatter the images will look. Consider this: On a TV, with a camera with a 6 stop range, the brightest thing the camera can capture will appear as white and the darkest as black. There will be 5 stops between white and black. Now shoot the same scene with a camera with a 12 stop range and show it on the same TV. Again the brightest is white and black is black, but the original 6 stops that the first camera was able to capture are now only being shown using half of the available brightness range of the TV as the new camera is capturing 12 stops in total, so the first 6 stops will now have only half the maximum display contrast. The pictures would look flatter. If a camera truly has greater dynamic range then in general you will get a flatter looking image, but it’s also possible to get a flat looking picture by raising the black level or reducing the white level. In this case the picture looks flat, but in reality has no more dynamic range than the original. Be very careful of modified gammas said to give a flat look and greater dynamic range from cameras that otherwise don’t have great DR. Often these flat gammas don’t increase the true dynamic range, they just make a flat picture with raised blacks which results in less data being assigned to the mid range and as a result less pleasing finished images.

So the key points to consider are:

Where you can control your lighting, consider using standard gamma.

The bigger the dynamic range you try to capture, the less information per stop you will be recording.

The further you deviate from standard gamma, the more likely the need to grade the footage.

The bigger the dynamic range, the more compressed the gamma curve, the more critical accurate mid range exposure becomes.

Flat isn’t always better.

To shoot flat or not to shoot flat?

There is a lot of hype around shooting flat. Shooting flat has become a fashionable way to shoot and many individuals and companies have released camera settings said to provide the flattest images or to maximise the camera dynamic range. Don’t get me wrong, I’m not saying that shooting flat is necessarily wrong or that you shouldn’t shoot flat, but you do need to understand the compromises that can result from shooting flat.

First of all what is meant by shooting flat? The term comes from the fact that images shot flat look, err, well…. flat when viewed on a standard TV or monitor. They have low contrast and may often look milky or washed out. Why is this? Well most TV’s and monitors only have a contrast range that is the equivalent of about 7 stops. (Even a state of the art OLED monitor only has a range of about 10 to 11 stops). The whole way we broadcast and distribute video is based on this 7 stop range. The majority of HD TV’s and monitors use a gamma curve based on REC-709, which also only has a 6 to 7 stop range. Our own visual system has a dynamic range of up to 20 stops (there is a lot of debate over exactly how big the range really is and in bright light our dynamic range drops significantly). So we can see a bigger range than most TV’s can show, so we can see bright clouds in the sky as well as deep shadows while a TV would struggle to show the same scene.

Modern camera sensors have dynamic ranges larger than 7 stops, so we can capture a greater dynamic range than the average monitor can show. Now consider this carefully: If you capture a scene with a 6 stop range and then show that scene on a monitor with a 6 stop range, you will have a very true to life and accurate contrast range. You will have a great looking high contrast image. This is where having matching gammas in the camera and on the monitor comes in to play. Match the camera to the monitor and the pictures will look great, 7 stops in, 7 stops out. But, and it’s a big BUT. Real world scenes very often have a greater range than 6 or 7 stops.

A point to remember here: A TV or monitor has a limited brightness range. It can only ever display at it’s maximum brightness and best darkness. Trying to drive it harder with a bigger signal will not make it any brighter.

Feed the monitor with an image with a 7 stop range and the monitor will be showing it’s blackest blacks and it’s brightest whites.

But what happens if we simply feed a 7 stop monitor with an 11 stop image? Well it can’t produce a brighter picture so the brightest parts of the displayed scene are no brighter and the darker, no darker so the image you see appears to have the same brightness range but with less contrast, it starts to look flat and un-interesting. The bigger the dynamic range you try to show on your 7 stop monitor, the flatter the image will look. Clearly this is undesirable for direct TV broadcasting etc. So what is normally done is to map the first 5  stops from the camera more or less directly to the first 5 stops of the display so that the all important shadows and mid-tones have natural looking contrast. Then take the brighter extended range of the camera, which may be 3 or 4 stops and map those into the remaining 2 stops of the monitor. This is a form of compression. In most cases we don’t notice it as it is only effecting highlights and our own visual system tends to concentrate on shadows and mid-tones while largely ignoring highlights. This compression is achieved using techniques such as knee compression and is one of the things that gives video it’s distinctive electronic look.

A slightly different approach to just compressing the highlights is to compress much more of the cameras output. Gamma curves like Sony’s cinegammas or hypergammas use compression that gets progressively more aggressive as you go up the exposure range. This allows even greater dynamic ranges to be captured at the expense of a slight lack of contrast in the viewed image. Taking things to the maximum we have gamma curves that use log based compression where each brighter stop is compressed twice as much as the previous one. Log gamma curves like S-Log or Log-C are capable of capturing massive dynamic ranges of anywhere up to 14 stops. View these log compressed images back on your conventional TV or monitor and because even the mid range is highly compressed  they will look very low contrast and very flat indeed.

So, if you have followed this article so far you should understand that we can capture a greater dynamic range than most monitors can display, but when doing so the image looks un-interesting and flat. So, if the images look bad, why do it? The benefits of capturing a big dynamic range are that highlights are less likely to look over exposed and  your final image contrast can be adjusted in post production. These are the reasons why it is seen as desirable to shoot flat. But there are several catches. One is that the amount of image noise that the camera produces will limit how far you can manipulate your image in post production. The codec that you use to record your pictures may also limit how much you can manipulate your image, the bit depth of the codec may result in banding when stretched and another is that it is quite easy to create a camera profile or setup that produces a flat looking image, for example by artificially raising the shadows, that superficially looks like a flat, high dynamic range image, but doesn’t actually provide a greater dynamic range.

Of course there are different degrees of flat. There is super flat log style shooting as well as intermediate flat-ish cinegamma or hypergamma shooting. But it if you are going to shoot flat it is vital that the recorded image coming from the camera will stand up to the kind of post production manipulation you wish to apply to it. This is especially important when using highly compressed codecs such as AVCHD, XDCAM or P2.

When you use a high compression codec it adds noise to the image, this is in addition to any sensor noise etc. If you create a look in camera, the additional compression noise is added after the look has been created. As the look has been set, the compression noise is not really going to change as you won’t be making big changes to the image. But if you shoot flat, when you start manipulating the image the compression noise gets pushed, shoved and stretched, this can lead to degradation of the image compared to creating the look in camera. In addition you need more data to record a bigger dynamic range, so a very flat (wide dynamic range) image may be pushing the codec very hard resulting in even more compression noise and artefacts.

So if you do want to shoot flat you need a camera with very low noise. You also need a robust codec, preferably 10 bit and you need to ensure that the camera setup or gamma is truly capturing a greater dynamic range, otherwise your really wasting your time.

Shooting flat is a great tool in the cinematographers tool box and with the right equipment can bring great benefits in post production flexibility. Most of the modern large sensor cameras with their low noise sensors and ability to record to high end 10 bit codecs either internally or externally are excellent tools for shooting flat. But small sensor cameras with their higher noise levels do not make the best candidates for shooting flat. In many cases a better result will be obtained by creating your desired look in camera. Or at least getting close to the desired look in camera and then just tweaking and fine tuning the look in post.

As always, test your workflow. Just because so and so shoots flat with camera A, it doesn’t mean that you will get the same result with camera B. Shoot a test before committing to shooting flat on a project, especially if the camera isn’t specifically designed and set up for flat shooting. Shooting flat will not turn a poor cinematographer into a great cinematographer, in fact it may make it harder for a less experienced operator as hitting the cameras exposure sweet spot can be harder and focussing is trickier when you have a flat low contrast image.

 

REC-709 – A true REC-709 camera should only have 5 stops of dynamic range!

In theory if two cameras are both set to REC-709 then the dynamic range should be identical as both cameras responses will be limited to the REC-709 specifications. The original REC-709 specification only allows for 5 stops of dynamic range from 0 to 100%. The addition of superwhites at 109% gives a little more and then the knee on top gives a bit more again. The whole point behind REC-709 is that when a REC-709 camera captures something of a specific brightness, then when that image is shown on a TV or monitor, the apparent brightness will be exactly the same. As REC-709 is based on legacy television standards that go back to the very beginning of television broadcasting, it only allows for the dynamic range of older television sets. If a camera deviates from REC-709 then there will be a miss-match between the image the camera records and the image the viewer sees.

So, if we have two cameras with sensors capable of a dynamic range greater than the REC-709 specifications and then we restrict them to REC-709, they should exhibit identical dynamic range. Just like two cars fitted with speed limiters, they would both have identical maximum speeds.  In fact the REC-709 specification is actually a viewing and display specification, not a camera specification and in reality the REC-709 gamma curves in most cameras don’t correspond exactly to the true 709 monitor specs as everyone would be up in arms if the camera only had a 5 stop range.

With almost any reasonably up to date cameras, anyone comparing a couple of cameras dynamic range with REC-709 and saying A has more dynamic range than B is a bit of a misnomer. Yes there will be differences in the way the gamma curve has been interpreted by the manufacturer or the way the knee works and perhaps camera A will give a more pleasing picture than B, but this is unlikely to actually be due to the dynamic range of the camera, just different ways the manufacturer has chosen to interpret the restrictions imposed by REC-709.

In my opinion, the only times you would want to use 709 is when you are shooting direct for broadcast where there won’t be time for grading or if you have enough control over your lighting to stay within a 6 stop range and that 6 stop range gives you the look you want.

Otherwise, I would use one of the extended range gammas included in most cameras these days, log, cinegamma, hypergamma etc, as these extended range gammas don’t try to comply to the REC-709 specifications they are not restricted to the legacy dynamic range imposed on us by REC-709. As a result they can easily accommodate much greater dynamic ranges and get closer to utilising the camera sensors full range, but at the expense of requiring some grading to restore contrast.

Canon C-Log on the C300 compared to S-Log.

First let me say that as yet I have not used C-Log in anger, only seen it at a couple of hands on demo events and in downloaded clips.

From what I’ve seen C-Log and S-Log are two quite different things. S-Log on the F3 is a true Log curve where each stop of exposure is recorded using roughly the same amount of data and the available dynamic range is about 13.5 stops. It is inevitable that when you use a true log curve like this and play it back on an uncorrected Rec-709 (standard HD gamma) monitor that it will look very flat and very washed out. This is a result of the extreme gamma miss-match across the entire recording range. If you had a monitor that could display 13.5 stops (most only manage 7) and the monitor had a built in Log curve then the pictures would look normal.

What has too be considered is that S-Log is designed to be used with 10 bit recording where each stop gets roughly 70 data bits ( this roughly means 70 shades of grey for each stop).

Now lets consider the Canon C300. It has no 10 bit out, it’s only 8 bit. Assuming Canon’s sensor can handle 13.5 stops then using 8 bit would result in only 17 bits per stop and this really is not sufficient, especially for critical areas of the image like faces and skin tones. A standard gamma, without knee, like Rec-709 will typically have a 7 stop range, this is a deliberate design decision as this yields around 34 bits per stop. As we know already if you try to do a hard grade on 8 bit material you can run in to issues with banding, posterisation and stair stepping, so reducing the bits per stop still further (for example by cramming 13.5 stops into 8 bits) is not really desirable as while it can improve dynamic range, it will introduce a whole host of other issues.

Now for some years camera sensors have been able to exceed 7 stops of dynamic range. To get around the gamma limitation of 7 stops, most good quality cameras use something called the knee. The knee takes the top 15 to 20% of the recording range to record as much as 4 to 5 stops of highlights. So in the first 0 to 80% range you have 6 stops, plus another 4 to 5 stops in the last 20%, so the overall dynamic range of the camera will be 10 to 11 stops.

How can this work and still look natural? Well our own visual system is tuned to concentrate on the mid range, faces, foliage etc and to a large degree highlights are ignored. So recording in this way, compressing the highlights mimics they way we see the world, so doesn’t actually look terribly un-natural. OK, OK, I can hear you all screaming… yes it is un-natural, it looks like video! It looks like video because the knee is either on or off, the image is either compressed very heavily or not at all, there is no middle ground. It’s also hard to grade as mid tones and highlights have different amounts of squashing which can lead to some strange results.

So the knee is a step forward. It does work quite well for many applications as it preserves those 34 bits of data for the all important mid tones and as a result the pictures look normal, yet gives a reasonable amount of over exposure performance. Next came things like cine gammas and film style gammas.

These often share a very similar gamma curve to standard gammas for the first 60-70% of the recording range, so faces, skin, flora and fauna still have plenty of data allocated to them. Above 70% the image becomes compressed, but instead of the sudden onset of compression as with a knee, the compression starts very gently and gradually increases more and more until by the time you get close to 100% the compression is very strong indeed. This tends to look a lot more natural than gamma + knee, yet can still cope with a good over exposure range, but depending on the scene it can start to look a little flat as your overall captured range is biased towards highlights, so your captured image contains more bright range than low range so will possibly (but not always) look very slightly washed out. In my opinion, if shooting with cinegammas or similar you should really be grading your material for the best results.

Anyway, back to the Canon C300. From what I can tell, C-Log is an extension of the cinegamma type of gamma curve. It appears to have more in common with cinegammas than true S-log. It looks like the compression starts at around 60% and that there is a little more gain at the bottom of the curve to lift shadows a little. This earlier start to the compression will allow for a greater dynamic range but will mean fewer bits of data for skin tones etc. The raised lower end gain means you can afford to underexpose more if you need to. As the curve is not a full log curve it will look a lot more agreeable than S-Log on an uncorrected monitor, especially as the crucial mid tone area is largely unaffected by strong compression and thus a large gamma miss-match.

For the C300 this curve makes complete sense. It looks like a good match for the cameras 8 bit recording giving a decent dynamic range improvement, largely through highlight compression (spread over more recording range than a conventional knee or cinegamma), keeping mid tones reasonably intact and a little bit of shadow lift. Keeping the mid range fairly “normal” is a wise move that will still give good grading latitude without posterisation issues on mid range natural textures.