This is a new lens announced today by Fujinon. It’s a 19-90mm T2.9 PL mount zoom lens, which in itself isn’t particularly interesting, there are plenty of similar lenses on the market. What is very interesting is that this lens has a removable hand grip that contains motors for the zoom and iris. So this lens bridges the gap between a traditional 2/3″ ENG style lens and a PL cine lens. If you don’t need the servo functions you can remove the hand grip. The lens has standard 0.8mod gears on the focus, zoom and iris rings so conventional follow focus motors can be used. In addition the lens is very lightweight for a PL zoom. Clearly this lens is in response to the growing use of Super 35mm camcorders in documentaries, news and other similar applications.
Tag Archives: super35
Focal length conversion factor should apply to the camera not the lens.
I was asked in some post comments whether the a 50mm PL mount lens would give a wider picture than a 50mm DSLR lens. This confusion comes about I believe because of all the talk about focal length conversion factors. I don’t think this concept is well understood by some people as the implication is that somehow the lens is changing when its used on different cameras, when in fact it’s the camera that is different, not the lens.
It is important to understand that a 50mm lens will always be a 50mm lens. That is it’s focal length. It is determined by the shape of the glass elements and no matter what camera you put it on it will still be a 50mm lens. A 50mm DSLR lens has the same focal length as a 50mm PL mount and as a 50mm 2/3″ broadcast lens. In addition the lens focuses a set distance behind the rear element, agin the distance between the rear element and where it focuses does not change when it’s put on different cameras, so an adapter or spacer must be used to keep the designed distance between the lens and sensor, this distance is called the “flange back”.
The key thing is that it’s not the lens or it’s focal length that changes when you swap between different cameras. It is the size of the sensor that changes.
Imagine a projector shining an image on a screen so that the picture fills the screen. The projector is our “lens”. Without changing anything on the projector what happens if you move the screen closer or further away from the projector? The image projected on the screen will go in and out of focus, so that’s not good, we must keep the projector to screen distance constant, just like the lens to sensor distance (flange back) for any given lens remains constant.
What happens if we make the screen smaller? Well the image remains the same size but we see less of it as some of the image falls of the edge of the screen. If our projected picture was that of a wide landscape then on the reduced screen size what would now be seen would not appear less wide as we are now only seeing the middle part of the picture. The width of the view would be decreased, in other words the FIELD OF VIEW HAS NARROWED. The focal length has not changed.
This is what is happening inside cameras with different size sensors, the lens isn’t changing, just how much of the lenses projected image is falling on or off the sensor.
So the multiplication factor should be considered more accurately as being applied to the camera, not the lens and the multiplication factor changes the field of view, not the focal length.
So whether it is a PL mount lens, a Nikon or Canon DSLR lens or a Fujinon video lens, if it’s a 50mm lens then it’s a 50mm lens and the focal length is the same for all. However the field of view (width and height of the viewed image) will depend on the size of the sensor. So a 50mm PL lens will give the same field of view as a 50mm DSLR lens (no matter what camera the lens was designed for) on the same video camera.
The only other thing to consider is that lenses are designed to work with certain sizes of sensor. A lens designed for a full frame 35mm sensor will completely cover that size of sensor as well as any sensor smaller than that. On the other hand a 2/3? broadcast lens will only cover a 2/3? sensor, so if you try to use it on a larger sensor the image will not fill the frame.
The sensors in the Sony F3 and FS100 are “Super 35mm”. That is about the same size as APS-C. So lenses designed for Full frame 35mm can be used as well as lenses designed for 35mm cine film (35mm PL) and lenses designed for APS-C DSLR’s such as the Nikon DX series and Canon EF-S.
See also http://www.abelcine.com/fov/
Focal length conversion factor should apply to the camera not the lens.
I was asked in some post comments whether the a 50mm PL mount lens would give a wider picture than a 50mm DSLR lens. This confusion comes about I believe because of all the talk about focal length conversion factors. I don’t think this concept is well understood by some people as the implication is that somehow the lens is changing when its used on different cameras, when in fact it’s the camera that is different, not the lens.
It is important to understand that a 50mm lens will always be a 50mm lens. That is it’s focal length. It is determined by the shape of the glass elements and no matter what camera you put it on it will still be a 50mm lens. A 50mm DSLR lens has the same focal length as a 50mm PL mount and as a 50mm 2/3″ broadcast lens. In addition the lens focuses a set distance behind the rear element, agin the distance between the rear element and where it focuses does not change when it’s put on different cameras, so an adapter or spacer must be used to keep the designed distance between the lens and sensor, this distance is called the “flange back”.
The key thing is that it’s not the lens or it’s focal length that changes when you swap between different cameras. It is the size of the sensor that changes.
Imagine a projector shining an image on a screen so that the picture fills the screen. The projector is our “lens”. Without changing anything on the projector what happens if you move the screen closer or further away from the projector? The image projected on the screen will go in and out of focus, so that’s not good, we must keep the projector to screen distance constant, just like the lens to sensor distance (flange back) for any given lens remains constant.
What happens if we make the screen smaller? Well the image remains the same size but we see less of it as some of the image falls of the edge of the screen. If our projected picture was that of a wide landscape then on the reduced screen size what would now be seen would not appear less wide as we are now only seeing the middle part of the picture. The width of the view would be decreased, in other words the FIELD OF VIEW HAS NARROWED. The focal length has not changed.
This is what is happening inside cameras with different size sensors, the lens isn’t changing, just how much of the lenses projected image is falling on or off the sensor.
So the multiplication factor should be considered more accurately as being applied to the camera, not the lens and the multiplication factor changes the field of view, not the focal length.
So whether it is a PL mount lens, a Nikon or Canon DSLR lens or a Fujinon video lens, if it’s a 50mm lens then it’s a 50mm lens and the focal length is the same for all. However the field of view (width and height of the viewed image) will depend on the size of the sensor. So a 50mm PL lens will give the same field of view as a 50mm DSLR lens (no matter what camera the lens was designed for) on the same video camera.
The only other thing to consider is that lenses are designed to work with certain sizes of sensor. A lens designed for a full frame 35mm sensor will completely cover that size of sensor as well as any sensor smaller than that. On the other hand a 2/3? broadcast lens will only cover a 2/3? sensor, so if you try to use it on a larger sensor the image will not fill the frame.
The sensors in the Sony F3 and FS100 are “Super 35mm”. That is about the same size as APS-C. So lenses designed for Full frame 35mm can be used as well as lenses designed for 35mm cine film (35mm PL) and lenses designed for APS-C DSLR’s such as the Nikon DX series and Canon EF-S.
See also http://www.abelcine.com/fov/
Sony FS-100 Super 35mm NXCAM Camcorder Announced.
Well the rumours have been circulating for some time and prototypes have been seen at various trade shows, but the full details have been sparse to say the least. Well here it is, it’s called the FS-100 and it’s a quite radical design from the Sony Shinegawa factory. The Super 35mm NXCAM shares the same sensor as the new PMW-F3, so the images will be excellent, but the design of the camera body itself could not be more different. If you don’t like it… well you can blame me and several other DoP’s that were invited to attend brainstorming sessions with the Sony engineers. In the photo below you can see the white board from one of those sessions and you can see where we (me and the other DoP’s) discussed ideas like a modular design with removable handles and how we hold handycam cameras.
The end result is this rather quirky but in my opinion, really quite clever and versatile design. The top viewfinder allows you to use the camera cradled in your hands in front of you, either using just the LCD panel or the monocular viewfinder. When your doing interviews you can twist it so that it is visible from either side of the camera, excellent for those interviews where you are both camera operator and interviewer. It allows you to alternate the sight lines from left to right of the camera for more varied interviews. It’s also useful for shooting in cramped locations such as in the front of a car as you can hold the camera sideways in front of you to shoot… I mean film…. the driver and still see what your getting.
Unlike most traditional camcorders the camera can be stripped down to just the sensor/recorder body. You can remove the top handle, mic holder and hand grip. In addition it has a multitude of tripod mounting holes on the top, bottom and even one side. On the base of the camera there are 6x 1/4″ threaded holes and wait for it… 2x 3/8″ holes. Hooray!! On the top there are a further 3x 1/4″ holes and there is even one on the side, revealed when you detach the removable hand grip. This is going to be fantastic for use on cars as a 35mm minicam or crash-cam. It will make getting all those different car chase angles so easy as a few small suction mounts will allow you to mount the stripped down camera just about anywhere. I can see the FS-100 becoming a “must-have” B camera to compliment my F3. The 1/4″ thread on the side of the camera means you can mount it on it’s side for portrait style shooting for digital signage or to get the maximum resolution when shooting people for chroma key.
While the camera does come with a detachable handgrip, there is no zoom rocker like the F3. That’s because the camera is primarily aimed at those using DSLR lenses which don’t have servo zooms, although PL mount adapters are available. The front end of the camera has Sony’s E mount for interchangeable lenses. It will come with the rather nice (if a little slow) 18-200mm f3.5-f6.3 optically stabilised zoom lens and the auto focus and auto iris do work! As well as Sony’s own G series lenses for the NEX cameras you can get adapters for Sony A mount and most other lenses. Do consider that if you are planning on using heavy PL lenses that the E mount is not designed for such high loads, so an additional lens support system should be used.
On the input and output front the FS-100 has most of the connectors you would expect to find on an NXCAM camcorder, with one notable exception… HDSDi. There is no HDSDi, but don’t panic! The camera does have HDMI and the quality available from HDMI is every bit as good as HDSDi. No word as to whether it’s 8 bit or 10 bit though. Sony are well aware that the one thing missing from HDMI is normally timecode, but even that has been addressed and it will be possible to export timecode in the HDMI stream, although at the moment we need to wait for the HDMI recorders to update them to accept timecode via HDMI. There are 2 XLR connectors for audio in. One on the right side and one on the rear, there is also the usual mini-D component out and RCA/Phono audio and composite video outputs.
When you start to delve into the cameras frame rates and recording modes things get really interesting as the FS100 will record full 1920×1080 at 60P and 50P. Even the F3 can’t do this internally (you can output 50/60P to an external recorder). As well as all the usual frame rates like 23.98, 60/50i, 30/25P you can also shoot full resolution slo-mo at up to 60fps using S&Q motion. It’s not quite as flexible as the F3 as you will find that you only have a choice of frame rates (for example 1,2,3,6,12,25,50fps) and won’t have the ability to dial in any frame rate you want, but all frame rates will be full 1920×1080. As with the other NXCAM camcorders all these lovely modes will be recorded on to SD cards or Memory Sticks using the AVC HD codec (mpeg 4), in addition you can add the Sony FMU128 (128Gb Flash Memory Unit) for dual recording giving peace of mind with one off events.
Once your footage is on your cards the cleverness of this camera continues as you don’t need a laptop to backup your data. Simply plug in a USB drive or even a Blu-ray burner), direct to the cameras USB port and you can backup direct from the camera to the drive. Your footage will contain GPS data about when and where you shot it, which for me will be a great bonus with my severe weather footage as I can never remember exactly where I was during a storm chase!
All in all this is looking like one hell of a camcorder. The street price is estimated to be below $6000 USD, so you do have to ask the question.. why buy an F3 when this is half the price? In my view they are two quite different cameras for different applications. The F3 has the ability to output full 10 bit 4:4:4 for extremely high quality recording possibilities. It also has built in ND filters and will have S-Log and 3D dual camera control. For multi-camera shoots the F3 has Genlock and timecode in/out. There will also be some nice servo zooms for the F3 some time later this year or early next year. The F3 is a camera that would not at all be out of place as a B camera on a big budget production. The FS-100 will I’m sure also find a place on big budget productions, perhaps as a crash-cam or mini cam. But overall I think it will be most at home on more run and gun style shoots where auto iris and maybe even autofocus are beneficial. I really do think that the FS100 will replace many of the DSLR’s out there currently being used for video as a lot of thought has gone in to the ergonomics.
These are very interesting times. It’s now possible to shoot a movie, with quality good enough for mainstream theatrical release on cameras costing little more than a high end home video camcorder of just a few years ago. I doubt most cinema goers would realise that a camera like the F3 or FS100 was used, especially if it’s recorded to a NanoFlash, KiPro or even the new Convergent Design Gemini. However we must not forget that content is king, not the technology that makes it possible.